AFRL-IF-RS-TR-2002-64
Final Technical Report
April 2002

DYNAMIC, COOPERATING BOUNDARY
CONTROLLERS

Boeing Defense & Space Group

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. E295

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

20020610 036

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2002-64 has been reviewed and is approved for publication.

APPROVED: JOHN FELDMAN
Project Engineer

Pz

FOR THE DIRECTOR: WARREN H. DEBANY, Jr., Technical Advisor .
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

Form Approved
REPORT DOCUMENTATION PAGE A a8

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
tha collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arkington, VA 22202.4302, and to the Office of Management and Budget, Paperwork Reduction Project {0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave blank] 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Apr 02 Final Sep 96 - Feb 98

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

C - F30602-96-C-0318
DYNAMIC, COOPERATING BOUNDARY CONTROLLERS PE - 62301E

PR - EO017
6. AUTHOR(S) TA -01

WU -06.
Dan Schnackenburg
7. PERFGRMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Boeing Defense & Space Group REPORT NUMBER
Research & Technology .
PO Box 3999 D658-10822-1
Seattle, WA 98124-2499
3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

Defense Advanced Research Projects Agency AFRL/IFGB
3701 North Fairfax Drive 525 Brooks Road AFRL-IF-RS-TR-2002-64
Arlington, VA 22203-1714 Rome, NY 13441-4505

11. SUPPLEMENTARY NOTES .

AFRL Project Engineer: John Feldman, IFGB, 315-330-2664

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)
This project has prototyped a preliminary design concept for a capability, enabling networks of networks to cooperate in the

detection of system attacks, learn about the attack behavior, and dynamically reconfigure to protect the greater network
infrastructure. This can be enabled by providing a mechanism for intrusion detection systems and boundary controllers to
coordinate their actions. The focus of this concept has been to develop, implement and demonstrate an Intruder Detection
and Isolation Protoco! (IDIP) which can be used to track network intruders to their point of entry within the "cooperating”
network of networks, thus enabling network-level access control policies to be dynamically changed in response to the
detected attacks.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Intrusion Detection, Boundary Controllers, Automated Response, Intrusion Isolation, Dynamic 36
Response 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 (Rev. 2-89) {EG)
Prescribed by ANS| Std. 239.18
Designed using Perform Pro, WHS{DIOR, Oct 94

1.1
1.2
1.3
1.4
1.5
1.5
1.6
1.6.1
1.6.2
1.6.3
1.6.4
1.&6.5

TABLE OF CONTENTS

Page
INTRODUGCTION ..o cveeeeeeeeeeeeetteviseasesseseeseetsessesassae s asss s esne b sas s enssb s tes s esssnssssanes 1
BACKZIOUNG..1.tvrtre e rirese bbb s 1
ADPTOACK 1.ttt s b 3
Summary of AcCOMPIISAMENTS....oiiiimiini i 4
SCOPE «ovvveverseesreseeseassesesnts e ess bbb 5
IDIP SUMMARY oottt eteetestesesses e sseseeseasssasabaasssaa s s s st shsan s s s st s 5
IDIP Concept 0f OPETALIONSovirrvriiriersrreessrseinises s e 6
IDIP LLAYETINE .vvrveemevensiacitntesseseise s s bt bbb e 9
IDIP MESSAZE LAYET......vevcveviuciiiriieeitsiet sttt s s 10
HIELLO PrOMOCO oot sssssssesesseeesssssesctssnsnsnes 10
K Y DIStITDULION c.ovueiriiiririeseissine st 10
Cryptographic Extensions to the Message Layer ... 11
IDIP ApPHCAtion LaYer......ccvurvrueiieusisersericstrsesessissiisss sttt 11
PROJECT ACCOMPLISHMENTS ..ottt e 12
Overall Accomplishmentsccoceieinenccinnnn et erheeteeee et a st se b e e enens 12
Capabilities DEVEIOPEA......orirusiirrueiserieiiisi s 13
LESSONS-LEAITIEM 1. ieieieieiieeeieeeirsereiee s eeesr e e sa e s s e e sb e st s st et be s s sa b e e st e st aanseens 16
CRYPTOGRAPHIC MECHANISMSooiiiinrieiiiiimiine et ssaaeseas 19
FURTHER INVESTIGATIONS, RESEARCH, AND DEVELOPMENT 21
IDIP MOGIfICAtIONS c.veeveevieeieniirieseeresiensereesessesneeeestereesaassssse st s sressesbeebs s sn s snnssanssnas 21
Further Research and Development.........ccoiiiiiininienniiiiiiiiinin s e 21
PROOF-OF-CONCEPT DEMONSTRATION RESULTScooviiiiiiineicieians 23
SUMMARY AND CONCLUSION ...c.ooiiiieiiiieriiismiitesse it et assssens 25
Recommended Future WorK......coovevieeeneniniiiie e s25
CONCIUSION 1. eeveeveeereeaeeeeeeveeseensensessessse b e be s s eassse s ias e ae e s s b e e R s e s b b e st e sae e ertsat s e n s st et easaan e 25
REFERENCES ...oeoveeeeett et eete et ettestestasae st st essasbssas st es s e s s an s e s ta st s s e sat an s s st n maensas 26

LIST OF FIGURES

Page
Figure 1. SPoofing AttaCKc.ociiiiiiiiiiiiiiec s s 3
Figure 2. IDIP COMPONENLSccovuiuucuiiiiiisiiiiietnt st s sasssre e bbb st eb s s 4
Figure 3. Typical IDIP COMMUINILYovvveuiieiiiiiiiniiiiitniiitee et 6
Figure 4. IDIP-Based System Under Attackcoccoioiviiiniinininininsisecsnnciis 7
Figure 5. IDIP RESPOIISEvvevieeiiiiiieiiiisis sttt s 8
Figure 6. IDIP Response (Continued)ccviueriiiieiniiiiiecciie s 9
Figure 7. IDIP LAYETING ...vevvveeeveueicrieriiiiitiiciiisiete ettt 10
Figure 8. MIDS ATCHItECTUIEoveriviiieiirieieiciiiie sttt 14
Figure 9. Firewall Toolkit IDIP ArchiteCture...........cocveiiiuiiiiiniiiiniiiei s 15
Figure 10. SNS IDIP ArChiteCtUIEcooviiiiiiiiiiiiiiiiiecie it 16
Figure 11. Demonstration Configuration...........ccoeoeriiiininiiiieie e 23

1i

Dynamic, Cooperating Boundary Controllers

1 INTRODUCTION

This objective of this effort was to prototype a capability, enabling networks of networks to
cooperate in the detection of system attacks, mitigating their effects and dynamically
reconfiguring to protect the greater network infrastructure from further attacks launched via the
offending source. The solution sought had to satisfy the following design criteria:

1. Scalability from small to very large systems.
Robustness.
End-user transparency.
Simplicity.
Protection against spoofing.
Compatibility with multiple encryption technologies.
The approach taken was to develop the required technology including, a concept of operations,
specific mechanisms, and a special protocol suitable for achieving the objective. The concept of
operations was then proved by the development of separate implementations of that protocol for
three representative boundary control/intrusion detection examples, and a feasibility
demonstration of the resultant technology’s.

Nvs LD

A new intrusion response protocol and its concept of operations were designed to enable the
following functions--

1. Tracking down the intra-network launch point across a network of networks (given that
the intruder had successfully compromised a host within the network of networks).

2. Dynamically altering the filtering rules of firewalls and filtering routers based on
suspicious behavior identified at remote devices.

3. Dynamically altering the monitoring rules of access control devices and intrusion
detection systems based on suspicious behavior identified at remote devices.

4. Synthesizing the intrusion detection capabilities of both access control and intrusion
detection system to gain a better picture at the system level of network intrusions, thus
providing the underlying mechanisms to enable “detection fusion.”

5. Providing for centralized monitoring of progress in accomplishing the tracking down
function.

6. Maintaining autonomy of sub-networks while cooperating with neighboring security
devices.

1.1 Background

Government, and commercial information systems are vulnerable to attacks., System
administrators typically use statically configured “boundary controller” components (e.g.,
filtering routers and firewalls) at the network boundaries to protect their systems from these
onslaughts. These boundary controllers typically operate as standalone security barriers
protecting their internal system domain against outside intruders. Because these boundary
controllers concentrate on protecting the internal domain from outside attacks, the mechanisms

tend to provide limited protection from intermal user activity. Therefore, once an attacker
succeeds in compromising a host inside a protected domain, the attacker often can operate with
relative impunity inside the networked system launching attacks against other hosts inside the
network of networks. These attacks frequently are very effective because within a networked
system, sub-networks typically are not protected from each other. Attackers who get past the
external system barriers have greater opportunities to use the compromised network to penetrate
additional subsystems and even use local resources to launch attacks on critical systems. One
method of changing this external attack into an apparently internal legitimate user would be to
deposit a Trojan horse that continues the attack for the penetrator. Placing Trojan horses within a
network is relatively simple. Intruders can use ActiveX applets, Java applets, and document
macros to install Trojan horses within internal system components, circumventing typical
firewall controls. For example , the penetrator can use services (e.g. web access and email) that
must pass through the firewall in most organizations. Both web access and email services allow a
remote user to place executable code on the destination machine, and this code can then be used

to launch attacks across the organization’s Intranet.

To help protect their networks, system administrators can deploy intrusion detection systems
throughout the enterprise to determine when outside penetrators or malicious insiders are
attacking critical components. Traditionally, intrusion detection components and network
boundary controllers (e.g. firewalls and filtering routers) have operated independently in
providing system protection. Detected anomalies are typically reported to system administrators
by the intrusion detection components, but by the time a system administrator determines and
executes the correct response to the intrusion, the attack has more often then not succeeded.

For the enterprise to reasonably respond to network-based attacks, mechanisms for cooperation
among boundary controllers and intrusion detection system must be in place. Although more
commercial off-the-shelf (COTS) intrusion detection systems have added real-time response
mechanisms that can change local boundary controller policy to block incoming data streams
based on the detected anomaly’s source and target addresses and targeted services to their
functionality. There are two difficulties inherent with these solutions. They are that (1) the
response can only occur with boundary controllers known to the intrusion detection system, and
(2) the intrusion detection system must know how to configure each boundary controller that it
needs to control. Figure 1 shows a typical configuration for these intrusion detection systems.
As seen in Figure 1, if the attacker were spoofing Host A4’s source address, then the intrusion
detection system directed response to the firewall would not block the attacker, but would block
legitimate traffic from Host 4. This would allow the attacker to use the response mechanism as a

denial of service attack.

To minimize the impact on the rest of the networked system, a mechanism is required that (1)
enables the response to be closer to the attacker (minimizing impact on legitimate traffic; and (2)
allows interoperability among a wider variety of intrusion detection systems. The Intruder
Detection and Isolation Protocol (IDIP) provides this interoperability and also provides boundary
controllers in the path of the attack with sufficient information to permit tracking the intruder to
the network component from which the attack is being launched and to block the attack traffic
closer to the source.

Intrusion Detection
System

......

% Firewall

ttacking Host

Figure 1. Spoofing Attack

1.2 Approach

The approach taken resulted in the development of a special protocol (the Intruder Detection and
Isolation Protocol — IDIP) for the purpose of supporting real-time intrusion response. The
protocol enables any security component that detects an attempted attack to trace the attack to its
origin , to cooperate with other systems security components in isolating the attacker by
blocking the attack traffic. This cooperation increases system survivability. Figure 2 shows the
various components that can participate in an IDIP-based response. Intrusion detection
components initiate IDIP response messages, and can support damage assessment and recovery
operations within the local environment. Boundary controllers (e.g., routers and firewalls)
provide network-based response mechanisms by blocking the intruder’s access to network
resources. Hosts would be capable of “finer-grained” responses by “killing” selected processes
and connections specifically associated with intrusion attempts. A network management
component (the Discovery Coordinator) receives intrusion reports and audit data from other IDIP
components, enabling it to (1) provide a global picture of the intrusion events and (2) coordinate
the overall system response.

IDIP-Enabled

Intrusion Detection .
s System 2 f
@ e IDIP-Enabled

i R T Network Manager

(Discovery Coordinator)

A

i

;

IDIP-Enabled

IDIP-Enabled Routers

Intrusion Detection
System

IDIP-Enabled

Routers IDIP-Enabled
Firewall

L3)

= IDIP-Enabled
Firewall

IDIP-Enabled

=~ IDIP-Enabled =% Client
Server B :

Figure 2. IDIP Components

Section 2.1 describes how these components can be used in responding to an attack.

1.3 Summary of Accomplishments

The utility of our intrusion response concept, protocol, and mechanisms were validated via two
successive demonstrations. In the second proof-of-concept demonstration (see Section 6), the
intrusion response system demonstrated the trace back and blocking functions for several
detected attacks across a relatively complex network.

The IDIP prototype satisfies the project objectives in the following areas.

1.

Scalability from small to very large systems. The use of IDIP “neighborhoods” (see
Section 2) limited the knowledge required of each IDIP component enabling easy growth
of the IDIP system. IDIP components only have to know about other IDIP components
that are near by, plus their discovery coordinator. This reduces the management required
for each component.

Robustness. IDIP was able to continue intrusion response operation even during attacks
that flooded the network or slowed down IDIP components. Additional work could,

however, further improve this robustness.

3. End-user transparency. No application changes were required to allow IDIP operate. IDIP
uses minimal network resources unless the system is under attack. At that point, IDIP still
uses very few network resources.

4. Simplicity. The IDIP application layer was particularly simple to implement and integrate
with our component prototypes. The use of a simple User Datagram Protocol (UDP)
based protocol enabled quick development of the IDIP message layer. The primary
complexity in IDIP is the key management functions required to provide IDIP self
protection.

5. Protection against spoofing. IDIP cryptographic services provide protection against the
spoofing of IDIP components through authentication and integrity mechanisms for IDIP
messages. We use a standard keyed hash algorithm to support authentication within each
IDIP neighborhood.

6. Compatibility with multiple encryption technologies. Although our initial implementation
uses Fortezza hardware, our cryptographic mechanisms are algorithm independent,
enabling integration of additional cryptographic algorithms to support varying user
requirements.

1.4 Scope

This technical report summarizes the results, including-
1. Summary of IDIP concept of operations and protocol layers.
2. Summary of project accomplishments, capabilities developed, and lessons learned.
3. Description of the cryptographic mechanisms used to support source authentication and
data integrity.
4. Recommended future work to better exploit this technology, including changes to IDIP to

improve it’s intrusion response capabilities.

5. Description of the proof-of-concept demonstration configuration and the scenarios
demonstrated. '

The Intruder Detection and Isolation Protocol has evolved into a number of protocols, including
IDIP message layer ([1]), HELLO protocol (for neighborhood management) ([2]), neighborhood
key information distribution (NKID) ([3]), IDIP authentication header ([4] and [6]), IDIP
encapsulating security payload ([5] and [7]), and IDIP application layer ([8]). These are each
documented separately to enable easier document maintenance. Each of these protocols is largely
independent of the others minimizing the impact of changes.

IDIP SUMMARY

There are several types of IDIP devices, including intrusion detection components, boundary
controllers (i.e., firewalls and routers), network management (the Discovery Coordinator), and
end systems.

For IDIP, there are three terms that require definition:

e Neighborhood — An IDIP neighborhood is a collection of adjacent IDIP components (i.e.,
two IDIP components are neighbors if they do not have an IDIP component between

them).

e A Discovery Coordinator is an IDIP component that receives attack descriptions and
descriptions of each IDIP node’s response, and potentially directs the overall system
response. Each IDIP node typically would have a single discovery coordinator.

e A “community” is a set of IDIP neighborhoods sharing a common Discovery
Coordinator.

Figure 3 shows a typical IDIP community. Communities can either be peers or hierarchically
related. This models the administrative environment in which IDIP components operate. Within
a large enterprise , there may be a single discovery coordinator that serves the entire organization.
Different sub-organizations within the enterprise may have their own discovery coordinators that
live below the Enterprise’s Discovery Coordinator in the hierarchy. Different organizations will
have peer discovery coordinators. Essentially, each discovery coordinator corresponds to an
administrative domain and discovery coordinators have reporting relationships that follow the
relationships of the corresponding administrative domains.

PR - Community T~
- - - I -
-7 -7 . =~ ~
- \{“ Neighborhood ™ N
- Boundary Controller ¢&:25 5 . . ~
e y .“ \Discovery ~
-———— i nator . = = = = =~ N
, _ - -~ ! —_— C?ordmftgr - -~ .

L ... Neighborhood™ < ! - Neighborhood . ~ 0

. 5 17 - RN
! ,’ Intrusmn% 1 sg’fﬁ 7 T~ 3 = Intrusion® | \
-, Detection - | « Boundary Controllers 77T R Detection |, !
vy System N e System 1 ,’

ANERN /I M /I z
N . ~ < , : i P s 7
N ﬂﬂa/ J-a- Aa:._g,ﬁéy—a /f
~ Boundary Controller -
Boundary Controllers. ~
Iy -
-

Figure 3. Typical IDIP Community

The following sections summarize IDIP concept of operations and the protocol layering of IDIP.

1.5 IDIP Concept of Operations

IDIP can be used to track intruders across intermediate networks, temporarily blocking further
activity from the intruder if that activity is interfering with the system’s mission. This is
illustrated in Figures 3 through 5. This shows how IDIP would respond to the following attack
scenario where the attacker spoofs host 4’s address in an attack on host B.

IDIP-Enabled
Intrusion Detection
' System

" IDIP-Enabled
Network Manager
(Discovery Coordinator)

S

IDIP-Enabled

IDIP-Enabled Routers

Intrusion Detection
... System

IDIP-Enabled

Routers IDIP-Enabled

Firewall

== IDIP-Enabled
Firewall

DIP-Enabled
Client

= |DIP-Enabled
Server B

Figure 4. IDIP-Based System Under Attack

Even though the attacking process spoofed A’s address in attacking B, IDIP can locate the
attacker’s network (Figure 5), temporarily blocking selected traffic from the attacker’s packet

stream if needed to protect local resources.

Once the attacker is traced back to a source machine, IDIP can be used to block traffic from that
network. If the attacker’s host also implements IDIP, then the IDIP boundary controller closest to
the attacker can request that the source machine kill the malicious process as shown in Figure 6.
Otherwise, the system administrator for the attacker’s host must manually bring the host to a
secure state. The temporary blocking at other IDIP boundary controllers can be lifted, and the
blocking within the attacker’s local network can be removed once the attacker’s machine has

been returned to a secure state.

IDIP-Enabled
Intrusion Detection
System

IDIP-Enabled
Network Manager

(Discovery Coordinator)

IDIP-Enabled

IDIP-Enabled Routers

Intrusion Detection
~_ System

IDIP-Enabled

Routers IDIP-Enabled
Firewall

et

/2 IDIP-Enabled
Firewall

DIP-Enabled
Client

Figure 5. IDIP Response

IDIP-Enabled -
Intrusion Detection .
‘ System w
8 ~ " IDIP-Enabled
Network Manager

(Discovery Coordinator)

s s

=3

IDIP-Enabled

IDIP-Enabled Routers

Intrusion Detection
. System

IDIP-Enabled

Routers IDIP-Enabled
Firewall

"' IDIP-Enabled

Firewall

Kill Malicious
Process

ey
== |DIP-Enabled
Server B

Figure 6. IDIP Response (Continued)

Throughout the response, each involved IDIP component sends response descriptions to the
discovery coordinator. The discovery coordinator provides the human interface to the system, and
can also request that devices modify their response.

1.6 IDIP Layering

Figure 7 shows the protocol components that comprise IDIP: (1) message layer, (2) HELLO
protocol, (3) NKID, (4) cryptographic services, and (5) IDIP application layer. The following
~ sections provide a brief summary of these protocol components. Section 4 further describes the
cryptographic mechanisms.

IDIP Application Layer NKID HELLO
Initiate Response Key Neighborhood
Determine Local Response Distribution Management
IDIP Message Layer

Reliable Delivery IDIP Cryptographic Services
Duplicate Removal Authentication Integrity
Multicast Support Privacy Replay Protection
Time Management Tardiness Protection

User Datagram Protocol

Internet Protocol

Figure 7. IDIP Layering

1.6.1 IDIP Message Layer

The IDIP message layer provides a simple, secure, reliable multicast mechanism for IDIP
applications. This layer also supports uni-cast message transmission between IDIP components.
The multicast functionality allows IDIP applications to communicate with all neighbors using a
single Application Programmer’s Interface (API) call. The message layer multicast functionality
can use either the IP multicast or IP unicast service, but provides a multicast interface to the

application layer.

The message layer is responsible for reliably delivering the messages to each neighbor for
multicast transmission and to the single destination for unicast transmission. The message layer
determines and applies the cryptographic mechanisms required for the message.

1.6.2 HELLO Protocol

The IDIP HELLO protocol provides neighborhood management functions supporting the IDIP
message layer. The HELLO protocol identifies which IDIP components are neighbors and
maintains the state of each neighbor so that the message layer can determine which neighbors are
currently operational. The IDIP message layer provides the neighborhood management functions
with notification of failed transmission, and the neighborhood management functions provide the
IDIP message layer with notification of added and deleted neighbors.

1.6.3 Key Distribution

The IDIP key distribution protocol supports the cryptographic functions used by the message
layer by determining a neighborhood “captain” and distributing the captain’s keys throughout the
neighborhood. This allows the entire neighborhood to share one key for multicast message
transmission. The captain is the key generator for the entire neighborhood and is selected based
primarily on a “priority” value assigned by a certification authority. This priority value indicates
how good the captain is as a candidate for key generation. Criteria that may be used include
likelihood of penetration and criticality to the neighborhood operation. The certification authority

10

binds the priority and the IP address with the IDIP node’s public keys in the node’s credentials
(which may be a standard X.509 certificate).

Captains need to be the best protected of all IDIP components because they are the components
that can exclude other IDIP devices if those devices are determined to be compromised.
Additionally, captains should be components that operate continually to support key distribution
at all times.

1.6.4 Cryptographic Extensions to the Message Layer

IDIP provides both privacy and authentication mechanisms. These mechanisms are modeled after
IP Security (IPSEC) ([10] and [11]), except that they provide protection above the transport
layer. This enables IDIP support for cryptographic mechanisms in systems where the local
infrastructure does not provide cryptographic protection.

1.6.5 IDIP Application Layer

The IDIP application layer protocol is responsible for initiating and responding to IDIP TRACE
messages, and for responding to directives from the discovery coordinator. IDIP TRACE
messages are requests for other IDIP components to respond to an anomaly. These messages
include a description of the anomaly, as well as general requested responses to track down,
increase monitoring for, or block the anomaly. The IDIP application layer uses the message layer
to multicast TRACE messages to the appropriate neighborhoods when an anomaly is detected.
When a TRACE message is received, the IDIP application layer is responsible for responding to
TRACE requests by (1) searching audit information for evidence of the attack passing through
the device, (2) determining the local response for a TRACE message, (3) forwarding the TRACE
message to the appropriate neighborhoods after making necessary translations (address and port
changes at firewalls), (4) reporting the response taken to the discovery coordinator and the
initiator, and (5) sending evidence to the discovery coordinator.

11

2 PROJECT ACCOMPLISHMENTS

The following sections detail the major accomplishments of this project, specific capabilities
developed, and lessons-learned.

2.1 Overall Accomplishments

The major achievement of this contract was the development and validation of our intrusion
response approach. The current and near-term planned enhancements are consistent with our
initial concept ([9]), although a number of details have changed.

Our original objective was to develop an approach to real-time intrusion response that would
scale well across very large networks (i.e., thousands of network elements such as a large
corporate intranet or the Internet) and support operation across administrative domains. This
requires that response components be able to respond autonomously. Each component makes
independent response decisions based on IDIP messages and policy parameters from the local
(and parent if hierarchical system administration is used) administrative domain. The prototypes
developed were used to demonstrate this over a reasonably complex network. Because of time
constraints, we were unable to test the prototypes across a large operational network. However,
we were able to construct a relatively complex test network (see Section 6) and the prototypes
successfully operated in that network responding to a number of network-based attacks,
validating the utility of our approach.

The protocol and operational concept developed meets our top-level project objectives as
follows—

1. Scalability from small to very large systems.

IDIP uses minimal system resources until anomalous behavior is detected. After
initialization, only infrequent “keep-alive” messages are sent between IDIP components.
IDIP uses UDP to minimize use of system resources when under attack. OQur use of
neighborhoods requires minimal configuration of IDIP components. Because IDIP
provides all required information for response in a single message for each anomaly,
component interactions are minimized. The concept allows either globally or locally set
policies to be used, but once the policies are established for a component that component
makes response decisions autonomously.

2. Robustness.
The use of UDP improves system robustness. When components are failing, complex
protocols tend to fail as well, where simple protocols, such as UDP, are more likely to
succeed. Cryptographic authentication mechanisms provide protection of the IDIP system
from attack. The use of a largely stateless protocol provides relative simplicity, which
enables development of higher assurance components that are less likely to be
successfully attacked.

3. End-user transparency.

The IDIP system places no constraints or requirements on end-user operation. IDIP is
compatible with the existing IP protocol suite, which enables use of IDIP without

modification in most systems.

12

4. Simplicity.
As stated above, the use of UDP and a relatively stateless protocol provide simplicity.
5. Protection against spoofing.

Cryptographic authentication mechanisms are used to ensure source authenticity for IDIP
participants.

6. Compatibility with multiple encryption technologies.

Our use of the algorithm independent IPSEC-like protocol for cryptographic
authentication and privacy enables use of multiple cryptographic algorithms.

Although not an original objective, we provided significant input to the DARPA Common
Intrusion Detection Framework (CIDF) effort, including development of (1) the CIDF message
layer and (2) initial CIDF response messages. The IDIP message layer provides a secure, reliable,
light-weight mechanism for transporting CIDF messages, and is being adapted to support CIDF
requirements. To enable intrusion detection components to use a single “language” for describing
events, we are working with CIDF to include intrusion response-related messages in CIDF.

2.2 Capabilities Developed

The following list summarizes the work completed under this project.
1. Development of the initial IDIP and its concept of operations, documented in [9].
2. Development and integration of four prototype implementations of IDIP.

a. Master Intrusion Detection System (MIDS). We developed MIDS to provide
detection capabilities comparable to COTS real-time network-based intrusion
detection systems. MIDS was written in Perl to allow rapid modification of MIDS to
support detection of new attacks as they are developed. The MIDS architecture is
shown in Figure 8. MIDS uses multiple MIDS detection agents, a central MIDS
controller, and an IDIP engine. Each detection agent is a relatively simple intrusion
detection component that monitors the network for one specific type or class of
attacks. The detection agents report anomalies to the MIDS controller, which filters
the messages for duplicates and checks thresholds where necessary before forwarding
the message to the IDIP engine. The IDIP engine builds the IDIP message and sends
the message to the IDIP neighbors. MIDS has proven useful in quickly building
detectors for new attacks that are published on hacker bulletin boards. MIDS runs on
Solaris.

13

external reports
<>

_IDIP engine _

IDIP[]

Component

MIDS controller

internal reports

Detection
Agentn

Detection
Agent 2

Detection
Agent 1

Figure 8. MIDS Architecture

b. Firewall Toolkit. The publicly available Firewall Toolkit (developed by Trusted
Information Systems) was used to integrate IDIP with a firewall component. In the
first demonstration, we used the standard Firewall Toolkit. In the second
demonstration, we used the DTE-enhanced Firewall Toolkit. The DTE enhanced
Firewall Toolkit uses domain-type-enforcement (DTE) technology to limit what each
process, including privileged processes, in the firewall is permitted to do. These limits
provide protection against flaws in the protocol stack for each service. If there is a
flaw in the Firewall Toolkit or underlying operation system that an attacker can
leverage, DTE places severe limitations on what the attacker is capable of doing if the
attack succeeds. The attacker can only use what is provided inside the process’s
domain. So a compromise in one service does not result in a compromise of the entire
system. The primary modifications to the Firewall Toolkit are shown in Figure O.
Changes required to the Firewall Toolkit proper were primarily enhancing the audits
to enable intruder tracing. Our Firewall Toolkit implementation runs on a PC running
BSDI’s BSDOS 2.1. This IDIP implementation is being made available on the
Firewall Toolkit web site.

c. Secure Network Server (SNS). The Boeing SNS was used to integrate IDIP with a
filtering router. The SNS required minimal modification to support IDIP. Figure 10
shows new and modified processes required to integrate IDIP into the SNS. The
largest modifications were to the SNS management process, which provided the
application-layer IDIP implementation in the SNS. The SNS runs on a PC with a
Boeing proprietary operating system.

d. Discovery Coordinator. We developed a simple discovery coordinator to support our
demonstrations. The discovery coordinator is necessary to provide a single point at
which one can monitor the progress of IDIP in intrusion response. The discovery

14

coordinator software runs on a Solaris workstation, and prints summaries of messages
from other IDIP components that indicate IDIP response progress.

audit audit trail other sources

?/) (syslog) ‘\ /— of system info,
e.g., netstat
event
other pro - detector . ‘
ftp, smtp s \ detection notice
— (data optional)

audit

{} data IDIP
Proxy
proxy mediator IDIP[]
firewall config _ Components
*.____~ | (netperm table) blocking
actions
DTE Kernel

network A ﬁ ﬁ network B

Figure 9. Firewall Toolkit IDIP Architecture

3. Development of cryptographic mechanisms to provide privacy, integrity, and
authentication services for IDIP. These are described in sections 2.3, 2.4, and 3.3, and
references [3] through [7].

4. Enhancement of the IDIP message layer to support CIDF requirements, evolving IDIP
requirements, and cryptographic mechanisms. The initial IDIP message layer was
substantially different from the current message layer. The current message layer better
supports multicast, which when used reduces the IDIP system overhead. We have not yet
experimented with multicast use, but have made transitioning to multicast operation
transparent to the application layer. We also modified the partitioning of the IDIP
functionality between the message and application layers primarily due to requirements
levied on the message layer from our cryptographic mechanism design, but secondarily to
support IDIP message layer use in CIDF. Additionally, we made several implementation
changes to the IDIP message layer to accommodate the poor performance from the
Fortezza cryptographic hardware. The resulting message layer protocol should be more
robust and easier to maintain.

5. Development of an “attack suite” to support IDIP testing. We collected and developed a
number of attacks that include several recent attacks available on hacker bulletin boards.
We also developed a graphical user interface for using these attacks, which made
launching these attacks easy once the scripts were developed.

15

[[P Device Interface Processor

r IP Device Interface Processor

Network Manager

IDIP Configuration '5'.,‘!.

IDIP Configuration /IDIP Configuration

[P Device Interface Processor

Network
Administrator §f
Manager i

Updates Initialization -
SNS Processo! X ‘M‘K// System Memory
— Transport 2
N Sender 5/ AckMbox) |4 DIP Audit Queue
e
\

IDIP Request Queue

v\

Y Receiver 3

New Processes .

Existing Processes with Minor Changes

Figure 10. SNS IDIP Architecture

2.3 Lessons-Learned

The following paragraphs summarize key lessons-learned from this effort.

1.

Cryptographic mechanism performance impact. During our integration of the revised
IDIP components with cryptographic mechanisms, we found that our Fortezza
implementation was extremely slow. Some performance improvements were seen from
using the latest release of the Cryptologic Interface (CI) library. We also noticed a
significant performance difference between different Fortezza component vendors — a
factor of 4 for just the card reader performance. Even with the faster drivers and
hardware, overall performance appears too slow for large-scale use. With our fastest
implementation, each IDIP TRACE message took approximately 100 ms for
cryptographic processing on either transmission or reception. Because IDIP cryptographic
mechanisms are all “hop-by-hop” (i.e., cryptographic protection is between IDIP nodes
and not end-to-end) for messages that are being forwarded (e.g., messages to the
discovery coordinator), each node must validate and decrypt the message on reception and
encrypt and hash to forward the message. This totals 200 ms for the message, which gives
an IDIP throughput of less than 5 messages per second. For messages consumed or
generated by a node the cost is 100 ms, or a throughput of 10 messages per second. The
IDIP boundary controllers closest to the discovery coordinator see the largest amount of
traffic. In an environment such as used for our final demonstration, for various attacks, we
had 7 to 15 IDIP messages for the node closest to the discovery coordinator to forward,
and another 6 messages that were either consumed or generated at the node. The total

16

latency added by just this component for the last message to get to the discovery
coordinator was over 3.5 seconds when the system was working well and both ends of the
malicious connection terminated quickly. When one side of the connection would remain
open (for up to 2 minutes), additional IDIP messages would be sent for each additional
application packet that the malicious connection was generating. Each-of these would
further add another 3.5 seconds of latency, backing up the IDIP components. The result
was that the IDIP components would lose connectivity with each other. On loss of
connectivity, the components were designed to attempt to regain communication and then
proceed through key exchange. Key exchange requires public key cryptography, a slower
operation, which further aggravated the problem. We made several changes to the
software architecture, the protocol definition, and the implementation to (1) reduce the
number of IDIP messages and cryptographic operations required; (2) make the message
layer more tolerant of slow nodes; and (3) reduce the impact of cryptographic
mechanisms on the performance of the HELLO protocol, which is used to maintain
commectivity. A side benefit of this slowness was that the resulting message layer
implementation was more robust than previous versions.

Cryptographic mechanism integration. We did not allocate enough time and resources
to the cryptographic mechanisms. Our initial approach was to use IPSEC, and adapt it to
use Fortezza hardware. However, IPSEC was not readily available and not as easily
modified as we had hoped. In addition, we concluded that application-layer encryption
would better suit our purposes by enabling IDIP use where IPSEC is not deployed and
enabling application-layer authentication, rather than node-level authentication. Because
we were forced to develop our own cryptographic mechanisms, this task took
significantly longer than expected. We also found that debugging cryptographically
protected network applications is much more difficult (snoop is ineffective) than standard
applications. This increased the time required for the final system integration. The poor
Fortezza performance also contributed to additional integration problems, which required
more time than expected for trouble-shooting. Finally, development of a key distribution
protocol proved more difficult than expected, requiring additional integration time.

Shared message layer. Developing a common message layer to be shared by the three
development teams reduced integration time. We were able to integrate IDIP with MIDS
in one day, and integrate all four components with each other in less than a week in
preparation for our first demonstration. For the second demonstration, once the
cryptographic mechanisms were integrated with the message layer, component integration
took very little time.

Independent development. Although we were initially concerned about independent
development with a short integration time-frame for the four components, this did not
result in any problems. Splitting program responsibilities by component enabled the three
development groups to work largely independently once the concept definition phase was
completed. This was further supported by the early documentation of the concept and
protocol details.

Cryptographic algorithm independence. Defining an algorithm-independent
cryptographic protocol enables us to replace the poor performing Fortezza
implementation with higher speed components without disturbing the system protocol

17

architecture. We also partitioned the implementation so that the Fortezza-specific
software is encapsulated in a single module. We anticipate a number of software changes
as we add the second set of cryptographic algorithms, but that should be minimal except
for the algorithm-specific module.

Loosely coupled messaging architecture. The use of a simple message-based
architecture eased the integration efforts and allowed easy evolution as we changed
various parts of the protocol. Each message carries all of the state information required
for a component to determine the correct response, which eliminated inter-component
dependencies. This architecture also reduced the timing dependencies to those that exist at
the message layer.

Protocol independence. We recognized after the initial implementation that the
infrastructure components could be split into multiple separable protocol components. We
have documented each separately (references [1] through [8]) to promote maintaining this
separation and independence between the different parts of IDIP. The implementation still
requires some work to complete the separation.

18

3 CRYPTOGRAPHIC MECHANISMS

We developed cryptographic privacy, authentication, and integrity mechanisms, modeled after the
IPSEC mechanisms. The top-level goals for our IDIP cryptographic mechanisms are—

1.

Intra-neighborhood (i.e., hop-by-hop) integrity/authentication and confidentiality
protection. In communicating with a non-neighbor (e.g., discovery coordinator), IDIP
protects the message between adjacent IDIP neighbors on the path to the target. At each
IDIP hop, the message is validated and decrypted, then encrypted and hashed for the next
hop. No end-to-end privacy or integrity mechanisms are provided at this time:.

Single neighborhood keying relationships. Each neighborhood has a single key for
privacy and another key for the integrity/authentication mechanism. Because there is a
single key, all messages are authenticated to have come from a neighbor, but the specific
neighbor identity is not authenticated. Also, each neighbor can decrypt any message sent
within the neighborhood. This was done to minimize the number of keys required to
support each neighborhood, which reduces the performance impact of key management
and simplifies the implementation. This requires that a single node generate the
neighborhood key. This node is called the neighborhood “captain,” and is selected based
on management-specified attributes.

Separate key management and data protection. The NKID protocol provides key
management functions through a separate mechanism from the application data. That is,
the keying information is not sent as part of the application data, but is established prior to
application data being transmitted. This enables us to avoid performing key management
functions during real-time intrusion response. NKID supports periodic key change based
on either time or specific events (e.g., neighbor compromise).

Algorithm independent data protection protocol. The IDIP cryptographic mechanisms
allow different neighborhoods to use different cryptographic algorithms. The initial
implementation uses the Fortezza supported algorithms: Key Exchange Algorithm (KEA)
for key exchange, DSS for signatures, Skipjack for privacy, and HMAC-SHA for
authentication/integrity, however, the protocol can support alternatives to these. The
algorithm set is selected by the neighborhood captain.

In addition to these goals, we placed the following requirements on these mechanisms—

1.

Support for multicast operation, where a neighborhood is the multicast group. Using a
common neighborhood key enables the message layer to apply the cryptographic
mechanisms to a multicast message and have that message readable by all recipients in
the neighborhood.

Simplicity. The use of IPSEC-like headers for authentication and encryption provides all
the state information required with each message, except for the secret keys distributed
through NKID. The implementation of the privacy and authentication protection
mechanisms proved simple, with the only complexity in the key management software.

Operation over connectionless (UDP) channels. The protocol was specifically designed to
operate over UDP. The cryptographic association is tied only to neighborhood
membership and not to protocol state.

19

Minimal performance impact during real-time operation. The TPSEC-like headers used
support the cryptographic mechanisms have minimal size. In addition, because these
headers carry the necessary state information, there is no interruption of real-time
operation for association negotiation or resynchronization.

Support for tardy delivery detection. The message layer header includes a transmission
timestamp, and because the header is covered by the integrity mechanism, this field can
be used to detect delayed delivery. This is not a fool-proof mechanism because we do not
modify messages being retransmitted (to avoid additional cryptographic processing), so
retransmitted messages have the same timestamp as the original and messages dropped
due to transmission error also appear tardy.

Detection of modification to either IDIP application data and message header. The
application of HMAC-SHA algorithm to the entire IDIP message enables detection of
modification during transmission.

Protection against message replay. The message layer header includes a unique sequence
number for each message sent, which along with' the application integrity mechanism to
the header, enables detection of message replay.

Minimal dependencies on and interactions with the other IDIP mechanisms. The
cryptographic services are called from the message layer. The security associations for the
cryptographic mechanisms are established by NKID, but NKID could be easily replaced
by any other protocol that exchanges keys for multicast groups. NKID uses the message
layer, but could use any other protocol that support uni-cast operation. NKID only relies
on the HELLO protocol for notification of neighborhood changes so that it can determine
when key exchange is required. The IDIP message layer relies on the cryptographic
services to be sufficiently fast so that use of the cryptographic mechanisms does not cause
messages to time-out and be retransmitted. (This last dependence was where most of our
cryptographic mechanism integration problems arose.)

20

4 FURTHER INVESTIGATIONS, RESEARCH, AND DEVELOPMENT

The following sections describe (1) changes to IDIP that would provide more capable intrusion
response and (2) additional research and development to gain additional experience with
intrusion response mechanisms.

4.1 IDIP Modifications

We have already begun identification of IDIP modifications to enable more adaptable, optimal
responses under a related effort (Contract F30602-97-C-0217). Those modifications are discussed
in more detail in [12].

4.2 Further Research and Development

Beyond these changes, the following additional work would improve IDIP functionality in
operational environments—

1. Analysis of IDIP message layer robustness, and improvements, where needed, to
improve survivability in the face of infrastructure attacks.

2. Additional support for CIDF emerging requirements. CIDF may require transmission of
very large objects, requiring extensions to the IDIP message layer to support multi-
protocol data unit messages. Other extensions include directory support and option
negotiations.

3. Analysis of the HELLO protocol to identify additional mechanisms to support more
dynamic neighborhood building.

4. Analysis of NKID robustness. Specifically, identification of methods to reduce the risk
of key distribution during intrusion response.

5. Investigation of alternate protocols for NKID, HELLO, and IDIP message layer. Since
our initial design for these infrastructure components, a number of proposals have been
developed and submitted to IETF for reliable multicast, secure multicast, and multicast
group formation. We should analyze these to determine if one of these alternatives will
meet our requirements, and if not, determine if these proposals have concepts that could
be folded into IDIP to improve our functionality.

6. Integration with CIDF application-layer protocol. CIDF application-layer formats for
response components are just beginning to be developed. We should ensure that these
support our requirements, and then transition to CIDF to enable easy integration with
other DARPA intrusion detection research projects.

7. Integration of additional cryptographic algorithms. The IDIP implementation would
benefit greatly from integration of higher performance cryptographic algorithm
implementations. IDIP would be more robust if it could forward messages through an
IDIP component with a throughput of at least 200 messages per second. Qur current
Fortezza implementation can only achieve 5 messages per second.

8. IDIP message layer implementation improvements. The initial IDIP message layer was
written as a single protocol. We have since partitioned the protocol definitions to make

21

10.

11.

12.

HELLO, message layer, NKID, and cryptographic mechanisms largely independent. The
IDIP implementation would benefit from a restructuring to remove the remaining
implementation dependencies. This would further enable independent development of
each of the components. Related to this, it would be beneficial to investigate standard
cryptographic APIs to determine which, if any, could be used to isolate the cryptographic
mechanisms. For the initial implementation, we used the Fortezza CI API because it
minimized the software development effort. However, this API is not used for other

implementations.

Implementation of cost models within each IDIP component to allow cost-benefit
determination in selecting response options.

Investigation of better languages (and taxonomies) to describe attacks and intrusion
response actions.

Development of techniques for detecting and responding at the system level to
cooperating, distributed attacks (e.g., worms).

Integration with additional components, including COTS products, to gain better
operational experience with IDIP. :

22

5 RESULTS DERIVED FROM THE PROOF-OF-CONCEPT DEMONSTRATION

Figure 11 shows the configuration used in the proof-of-concept demonstration. The objectives of
the demonstration were to validate that IDIP can operate within a reasonably large network
environment and to demonstrate the IDIP cryptographic protection mechanisms. We had planned
to separate the halves to the demonstration configuration using the Boeing intranet, however, the
extended integration time required for the cryptographic mechanisms made that infeasible.
Instead, we used a Solaris workstation between the two “intranet networks” to simulate this
network separation. This provided a reasonably complex network for testing IDIP. During the
testing, we found a number of implementation errors, but no flaws in the basic concepts.

Attacking Host 2

s . 1)

Secure Network Server 1
(SNS)

Attacking Host 1

Figure 11. Demonstration Configuration

The following attacks were demonstrated, along with the IDIP response to those attacks—

1. Password Guessing attack was launched from Attacking Host 1 to Attacked Host 1 and
was detected by both MIDS devices. There are two different types of password guessing
attacks detected by MIDS: general password guessing (e.g., dictionary attack) and
attempting well-known passwords for standard accounts (called doorknob rattling). On
detection of either too many failed password attempts or access to well-known accounts,
MIDS initiates IDIP response. Both MIDS devices initiated tracing and blocking. Both
Firewall Toolkits closed the connection and the SNS's both blocked packets for the
connection.

2. Honey pot Entry attack was launched from Attacking Host 1 to Attacked Host 1 and was
detected by both MIDS devices. MIDS monitors for retrieval of directory listings with a
set of file names that are not permitted to be retrieved. Both MIDS devices initiated

23

tracing and blocking. Both Firewall Toolkits closed the connection and the Sis’s both
blocked packets for the connection.

3. Unusual Connection attack was launched from Attacking Host 1 to Attacked Host 2 and
was detected by Firewall Toolkit 1. The Firewall Toolkit monitors connection requests
for an administratively defined list of prohibited connections, and on detection of a
prohibited connection, initiates IDIP response. Firewall Toolkit 1 killed the connection
and initiated tracing and blocking. Both Sis’s blocked packets for the connection, and
Firewall Toolkit 2 killed its end of the connection.

4. Unusual Connection attack was launched from Attacking Host 2 to Attacked Host 3 and
was detected by SNS 1. The SNS packet filtering function rejects packets for any packet
matching administrator specified criteria, and on packet rej ection, initiates IDIP response.
SNS 1 initiated tracing and blocking. Both Sis’s blocked further packets being
transmitted between Attacking Host 2 and Attacked Host 3.

5. Honey pot Entry attack was launched from Attacking Host 1 to Attacked Host 3 and was
detected by Firewall Toolkit 1. The Firewall Toolkit monitors FTP connections for user
retrieval of an administratively defined list of prohibited files (e.g., /etc/passwd), and on
detection of a prohibited file retrieval, initiates IDIP response. Firewall Toolkit 1 killed
the connection and initiated tracing and blocking. Both Sis’s blocked packets for the
connection, and Firewall Toolkit 2 killed its end of the connection.

6. Each of the following attacks were launched from Attacking Host 2 to Attacked Host 3
and were detected by MIDS 1. MIDS 1 initiated tracing and blocking. Both Sis’s blocked
the specified packets, however, a bug in the SNS software caused SNS 2 to not forward
the blocking and tracing request to its neighbors.

a. LAND attack. The LAND attack is sending any IP datagram with equal source and
destination addresses. This causes many hosts (including NT and BSD Unix) to crash.

b. TCP/UDP Port Scan attack. TCP Port Scan is not necessarily an attack in itself, but is
often a prelude to attack. The objective of a port scan is to identify available
vulnerable services on the remote machine.

d. TCP Sequence Number Guessing attack. TCP Sequence Number Guessing involves
attempting to correctly guess the next TCP sequence number in an effort to hijack a
connection.

e. TCP SYN Flood attack. TCP SYN Flood attacks attempt to consume all pending
connections on the targeted machine, making it unavailable for use by other network
users.

The demonstration successfully demonstrated the feasibility of using IDIP over a complex
network in spite of a few minor implementation bugs. Additionally we demonstrated the use of
the cryptographic protection mechanisms for providing security for IDIP.

24

6 SUMMARY AND CONCLUSION

This project demonstrated the feasibility of using a protocol-based solution for coordinated real-
time response to network intrusions. The first-generation IDIP provides a response protocol that
allows loosely coupled, independently managed security devices to cooperate in tracking down
intruders and blocking their network activity, while allowing host devices to terminate malicious
processes associated with that activity. While the initial IDIP provides good response
capabilities, a more sophisticated capability can be achieved by extensions to the IDIP design and
an upgrade to the present IDIP implementations.

6.1 Recommended Future Work

There are several areas where IDIP concept requires additional work for it to become more
responsive to the demands of a wide range of environments prevalent in networking applications.
Section 5 above identifies recommended changes to the protocol design and implementation. We
also believe that more effort is required to use IDIP across network administrative domain
boundaries and to make each IDIP component more intelligent in selecting responses that
minimize collateral damage to the protected system. We further recommend that IDIP should be
implemented for additional components in order to allow testing alternate IDIP response
mechanisms'. Also, we recommend that IDIP analysis, testing, and experimentation be done to
determine what changes are necessary to use IDIP on a large scale. Finally, although we believe
that the discovery coordinator is a good choice for a global intrusion detection system; and we
are investigating how we can use this information to detect and respond to these types of attacks;
this is a difficult research area and should be pursued by multiple investigators employing a
variety of approaches to determine the best solution.

6.2 Conclusion

We defined an initial intrusion response concept, a framework and a protocol within which that
concept can be tested and refined. We developed four implementations of the protocol that
provide good examples of the use of IDIP. We determined that development and integration of
IDIP applications with various components (firewalls, filtering routers, and intrusion detection
systems) is straight-forward, however, development of the infrastructure to support IDIP was
much more difficult than initially planned. We have identified several potential directions in
which the IDIP concept can be expanded to (1) improve its utility in very large, complex
networks (i.e., thousands of network elements) and (2) more optimally respond to network-based
attacks.

! These recommendations are being investigated and implemented under two related contractual efforts: Adaptive
System Security Policies (Contract F30602-97-C-0217) and Automatic Response to Intrusion (Contract F30602-97-
C-0309).

25

7

[1]

(2]

(10]

[11]

[12]

REFERENCES

The Boeing Company. Intruder Detection Isolation Protocol (IDIP) Message Layer
(Draft), Boeing Document Number D658-10817-1, February 1998.

The Boeing Company. Intruder Detection Isolation Protocol (IDIP) Neighborhood
Management (Draft), Boeing Document Number D658-10819-1, February 1998.

The Boeing Company. Neighborhood Key Information Distribution (NKID) Protocol
(Draft), Boeing Document Number D658-10818-1, February 1998.

Trusted Information Systems, Inc. Intruder Detection Isolation Protocol (IDIP)
Authentication Header (AH), TIS Report Number 0699D, November 1997.

Trusted Information Systems, Inc., Intruder Detection Isolation Protocol (IDIP)
Encapsulating Security Payload (ESP), TIS Report Number 0698D, November 1997.

Trusted Information Systems, Inc., IDIP AH with Hashed Message Authentication Codes
(HMAC)-SHA-1, TIS Report Number 0700D, November 1997.

Trusted Information Systems, Inc., IDIP ESP with SKIPJACK Cipher Block Chaining
(CBC), TIS Report Number 0701D, November 1997.

The Boeing Company. Intruder Detection Isolation Protocol (IDIP) Application Layer
(Draft), Boeing Document Number D658-108120-1, February 1998.

The Boeing Company. Protocol Definition - Intruder Detection and Isolation Protocol
Concept, Boeing Document Number D658-10732-1, January 1997.

Network Working Group, Security Architecture for the Internet Protocol, Internet Draft,
draft-ietf-ipsec-aarch-sec-01, Randall Atkinson, Cisco Systems, 10 November 1996.

Network Working Group, IP Encapsulating Security Payload (ESP), Internet Draft, draft-
ietf-ipsec-esp-v2-00, Stephen Kent, BBN Corporation, 21 July 1997.

The Boeing Company. Adaptive System Security Policies, Preliminary Assessment,
Boeing Document Number D658-10821-1, February 1998.

26

ACK
COTS
IDIP

IPSEC
SYN
TCP

GLOSSARY OF TERMS

application programmer’s interface
acknowledgment

commercial off-the-shelf

Intruder Detection and Isolation Protocol
Internet Protocol

IP Security

TCP’s synchronization flag
Transmission Control Protocol

User Datagram Protocol

27

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of Information Systems Science
and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

